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Objectives: Fish proteins are potential sources of natural drugs and food additives. There are many
studies being performed to develop underutilized fish proteins. Therefore, the aim of this study
was to determine how shark protein functions as a dietary supplement for bone health.
Methods: Three groups of ovariectomized (OVX) rats were fed different diets containing 20% casein
protein, 20% shark protein, or 20% cod protein for 4 wk. Bone mineral density of the right femur
was measured by dual-energy x-ray absorptiometry and quantitative computed tomography.
Furthermore, we prepared low-molecular-weight peptides from shark protein using protease for
in vitro studies. Calcitriol was added to bone marrow cells and the receptor activator of the nuclear
factor-kB ligand was added to RAW264 cells. After 7 d, the number of tartrate-resistant acid
phosphatase-positive cells was counted.
Results: In the shark protein-fed group, bone mineral density of the femur epiphysis was higher
than that of the casein protein-fed group. In particular, the shark protein-fed group showed an
increase in bone mineral density of that was represented mainly by trabecular bone. Shark protein
hydrolysates inhibited osteoclast formation in bone marrow cells and RAW264 cells.
Conclusions: These results suggest that shark protein might suppress the bone loss caused by es-
trogen deficiency through the suppression of osteoclast formation.

! 2014 Elsevier Inc. All rights reserved.

Introduction

Shark protein, which is available on the world market, usually
comes from sharks that are caught during tuna trawler fishing.
The commercial value of the shark is represented mainly by its
fin, which is used as a luxury foodstuff. Therefore, shark fins are
normally obtained by the controversial practice of finning, in
which a shark’s fin is cut off and the rest of its body is tossed into
the ocean. However, in Japan, the entire shark body is utilized. Its
cartilage is used as a source of chondroitin sulfate and collagen is
purified from its skin. Although shark protein is the main
ingredient in fish-paste products, its commercial value remains
low. In our laboratory, we examined how shark protein can be
used to increase its commercial value.

Bone is an important organ that regulates mineral homeo-
stasis. Menopause causes physiological changes that can lead to
an imbalance between bone formation and bone resorption,
resulting in net bone loss and osteoporosis, mainly caused
by estrogen deficiency [1,2]. Current therapies for osteoporosis
include estrogen replacement therapies and the use of bis-
phosphonates. These therapies are effective in preventing bone
loss caused by menopause, but some are accompanied by
adverse side effects, such as uterine bleeding, carcinogenesis,
and cardiovascular disease [3–5]. Therefore, diet therapy and
lifestyle changes that minimize bone loss in postmenopausal
women would be very helpful in decreasing the need for drug
therapy to prevent osteoporosis. Recently, hydrolyzed collagen of
porcine origin [6], oil palm leaf extract [7], soy isoflavones plus
vitamin D3 [8], and lactoferrin [9] have become available as food
supplements for improving bone mineral density (BMD). How-
ever, few studies have examined fish protein–derived food
factors that have a beneficial effect on BMD. Therefore, the aim
of this study was to determine how shark protein functions as
a dietary supplement for bone health.
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Materials and methods

Materials

Seventeen-wk-old female Wistar rats were purchased from the Sankyo Labo
Service Corporation, Inc. (Tokyo, Japan). Casein was purchased from the Oriental
Yeast Co., Ltd. (Tokyo, Japan). Alcalase"2.4 L FG was purchased from Novozymes
A/S (Bagsvaerd, Denmark). Umamizyme G was purchased from Amano Enzyme
Inc. (Aichi, Japan). Murine macrophage RAW 264 cells were provided by RIKEN
BRC through the National Bio-Resource Project of the MEXT (Ibaraki, Japan). Fetal
bovine serum (FBS), penicillin–streptomycin–neomycin (PSN) antibiotic mixture
(100 X), non-essential amino acids, andminimum essential medium (MEM)were
purchased from Life Technologies Japan Ltd. (Tokyo, Japan). Receptor activator of
nuclear factor-kB ligand from mouse (RANKL), 17 b-estradiol (E2), calcitriol
(1 a,25-dihydroxy vitamin D3 [1,25(OH)2 D3]), and a-MEMwere purchased from
Sigma-Aldrich Inc. (St. Louis, MO, USA). Tartrate-resistant acid phosphatase
(TRAP) staining kit was purchased from Primary Cell Co., Ltd. (Hokkaido, Japan).
Other chemical reagents were all of special grade from Wako Pure Chemical
Industries, Ltd. (Osaka, Japan)

Preparation of shark protein hydrolysates

Shark protein hydrolysates (SH) were made from fresh great blue shark
(Prionace glauca) protein. Shark protein was heated in 80"C water for 3 min, and
then compressed to remove excess water. The same quantity of distilled water
was added along with proteases (Alcalase"2.4 L FG) at 3.333% (dry weight). After
30 min, the protein was further treated with 0.5% (dry weight) proteases
(umamizyme G) at 50"C and pH 7.0 for 24 h. Alcalase"2.4 L FG is an exo-type
peptidase and umamizyme G is a mixture of endo- and exo-type peptidases
with a broad substrate specificity. The reaction was stopped by heating at 85"C
for 20min. After all hydrolysates were centrifuged to remove the precipitates, the
supernatant was collected and freeze-dried. To compare with SH, cod protein
hydrolysates (CH) also were prepared in the same manner.

Amino acid analysis of casein, shark protein, and cod protein using
high-performance liquid chromatography

To determine the amino acid profile of casein, shark protein, and cod protein,
reverse-phase chromatography was used. Amino acid analysis was performed
using a previously described method [10], with slight modifications [11]. The
resulting phenylthiocarbamyl amino acids were separated using an octade-
cylsilane column (TSKgel ODS-80 TsQA 4.6 mm # 150 mm; Tosoh Corp., Tokyo,
Japan) at 1.0 mL/min using a binary linear multistep solvent gradient. Solution A
consisted of 50 mM sodium acetate buffer, pH 6.0, containing 3% acetonitrile.
Solution B consisted of 60% acetonitrile. Gradient profile was: 0 to 15 min, 0 to
70% B; 15 to 25 min, 70 to 100% B; 25 to 26 min, 100% B; 26 to 28 min, 0% B. The
column was maintained at 40"C. Elution peaks were monitored at 254 nm.

Molecular weight distribution of SH and CH by high-performance liquid
chromatography

The average-molecular-weight distributions of SH and CH were analyzed by
gel-filtration chromatography. Ten mg of two types of peptide sample were
dissolved in a mixture of 500 ml of ultrapure water and 500 ml of 45% acetonitrile
in water, in the presence of 0.1% trifluoroacetic acid. After solubilization, the

solutions were filtered and 50 ml injected into a silica-based column (TSKgel
G2500 PWXL 7.8 mm # 30 mm; Tosoh Corp.) using a high-performance liquid
chromatography LC-8020 Model II chromatograph (Tosoh Corp.) and elution was
performed with 45% acetonitrile in water in the presence of 0.1% trifluoroacetic
acid at a flow rate of 0.5 mL/min. The columnwasmaintained at 40"C. The elution
peaks were monitored at 215 nm.

Animals and diets

The studywas conducted in accordancewith the guidelines of the Committee
for Animal Research at Tokyo University of Agriculture and Technology.
Seventeen-wk-old female Wistar rats (N ¼ 28) were given a modified AIN-93 G
diet containing 20% casein for 3 d of acclimatization ad libitum. The rats were
housed in individual cages at 22 % 1"C, 50 % 5% humidity, on a 12-h light–12-h
dark cycle, with water ad libitum. On day 7 of the experiment, 22 rats were
ovariectomized (OVX) and 6 rats were sham-operated (sham). OVX rats were
then divided into three groups of six or eight rats. They were fed ad libitum for
4 wk on a diet consisting of AIN-93 G with 200 g/kg casein protein as the protein
source; the casein being replaced with shark protein (OVX shark) or cod protein
(OVX cod); the composition of this diet is presented in Table 1. Weight was
recorded every 4 d, and food intake measured every second day of the experi-
ment. After sacrifice, the right femur was excised from each rat to determine
bone density after all muscles and connective tissues had been removed.

Measurement of BMD dual-energy X-ray absorptiometry

The right femur was dissected and preserved in 70% ethanol at 4"C. BMDwas
measured by dual-energy x-ray absorptiometry with a Dichrom Scan PCS-600
instrument (Hitachi Aloka Medical, Ltd., Tokyo, Japan), starting scans in the
most proximal area and ending in themost distal. During data analysis, the femur
was divided into 20 equal segments along its major axis [12,13].

Table 1
Composition of the diets*

Caseiny Sharkz Codx

Casein 20 0 0
Shark meat 0 20 0
Cod meat 0 0 20
a-cornstarch 13.2 13.2 13.2
b-cornstarch 40.0486 40.0486 40.0486
Sucrose 10 10 10
Soybean oil 7 7 7
Cellulose powder 5 5 5
Mineral mix (93G-MX) 3.5 3.5 3.5
Vitamin mix (93-VX) 1 1 1
Choline bitartrate 0.25 0.25 0.25
tert-Buthylhydroquinone 0.0014 0.0014 0.0014
Total (%) 100 100 100

* Animals were fed a modified AIN-93 G diet.
y 20% casein diet.
z 20% shark protein diet.
x 20% cod protein diet.

Table 2
Amino acid concentrations in casein, shark protein, and cod protein

Amino acid weight ratio (%) Casein Shark protein Cod protein

Asparitic acid/asparagine 8.2 10.4 11.9
Glutamic acid/glutamine 24.3 16.3 17.4
Hydroxyproline 0.0 0.3 0.2
Serine 4.6 3.6 4.5
Glycine 1.8 5.4 4.5
Histidine 3.2 2.9 2.4
Arginine 3.7 7.0 6.8
Threonine 4.3 5.2 5.1
Alanine 3.1 7.8 6.5
Proline 6.8 2.8 3.0
Tyrosine 5.3 3.0 3.9
Valine 7.0 5.4 5.1
Methonine 1.8 3.7 3.7
Cysteine 0.2 0.5 0.3
Isoleucine 4.5 5.3 4.0
Leucine 8.7 9.0 7.7
Hydroxylysine 0.0 0.0 0.0
Phenylalanine 5.1 4.1 3.8
Lysine 7.5 7.2 9.2

Fig. 1. Elution pattern of shark protein hydrolysates (SH) and cod protein hydro-
lysates (CH) by gel-filtration chromatography. SH prepared from shark protein and
CH prepared from cod protein were analyzed using a silica-based column. Elution
was monitored by absorbance at 215 nm. Arrows indicate elution positions of
standard molecular weight.
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Measurement of BMD by quantitative computed tomography

Total BMD, cortical BMD, and trabecular BMD of the right femur were
measured by quantitative computed tomography (QCT) using a LaTheta LCT-100
(Hitachi Aloka Medical, Ltd.) with cross-sectional images of 480 # 480 pixels and
a slice thickness of 1 mm. The tube voltage of the x-ray generator was 50 kV (1
mA). BMD was evaluated for the proximal, middle, and distal parts of the femur
by dividing the femur into three equal lengths. The scans were analyzed with
LaTheta software (version 1.40).

Cell culture

Femoral bone marrow cells were collected from female Wistar rats (weight:
About 240 g). Femurs were removed and dissected free of adhering tissues. Bone
ends were removed andmarrow cavities flushed by slowly injectingmedia at one
end using a 23-gauge needle. Bone marrow cells (1.0 # 106 cells/mL) were
cultured in a-MEM containing 10% FBS and 1% PSN antibiotic mixture in 48-well
plates. The culture volume was 500 mmL per well. In addition to the presence of

1,25(OH)2 D3 (10-8 M), E2 (10-8 M), or SH (10 mg/mL) was added for 6 d. All
cultures were maintained at 37"C in a humidified atmosphere containing 5%
carbon dioxide in air. One-half of the medium was replaced every second d.

Murine RAW264 cells were grown in MEM supplemented with 10% FBS, 1%
PSN antibiotic mixture, and 0.1 mM non-essential amino acids. For osteoclast
differentiation, RAW264 cells (8 # 102) in 0.2 mL were seeded into wells of a 96-
well plate in a-MEM supplemented with 10% FBS and 1% PSN antibiotic mixture,
and cultured overnight. They were then further incubated for 7 d in the presence
of RANKL (50 ng/mL) and E2 (10-8 M), with SH (10 mg/mL) or CH (10 mg/mL). All
cultures were maintained at 37"C in a humidified atmosphere containing 5%
carbon dioxide in air. One-half of the medium was replaced every second d.

Osteoclast formationwas evaluated by counting the number of TRAP-positive
stained cells.

Osteoclast differentiation assay

Osteoclast formation was measured by quantifying the cells positively stained
by TRAP. Briefly, the cells were fixed using 10% formalin neutral buffer solution for
5 min and then stained using a TRAP staining kit according to the manufacturer’s
instructions. TRAP-positive staining cells with more than three nuclei were
counted as TRAP-positive staining multinucleated cells using light microscopy.

Statistical analyses

Data were expressed as means and SD for the number of measurements
shown in the figures or tables. Statistical analysis was carried out by analysis of
variance, using Excel 2007 (Microsoft, Redmond, WA, USA) with the add-in
software Statcel 3 (OMS Publishing Inc, Saitama, Japan). The significance of dif-
ferences was determined using Dunnett’s multiple comparison test. The proba-
bility level used to determine statistical significance was P < 0.05.

Results

Properties of casein, shark protein, and cod protein

Casein, shark protein, and cod protein were analyzed for
amino acid composition, as shown in Table 2. Shark protein was

Table 3
Effect of shark protein and cod protein on several parameters*

Sham OVX

Casein
(n ¼ 6)

Casein
(n ¼ 8)

Shark
(n ¼ 6)

Cod
(n ¼ 8)

Final body weight
(g)

262.3 % 9.3y 295.4 % 23.1 295.4 % 20.0 291.8 % 15.3

Body weight gain
(g)

19.9 % 5.9y 44.9 % 8.2 42.6 % 12.6 41.3 % 8.3

Food intake (g/d) 13.9 % 1.0y 17.1 % 1.4 17.0 % 1.2 17.0 % 1.3
Uterine weight

(g)
0.66 % 0.11y 0.13 % 0.04 0.13 % 0.02 0.12 % 0.09

Femur length
(mm)

35.67 % 0.35 35.92 % 0.99 35.87 % 0.59 35.97 % 0.69

Femur weight (g) 0.77 % 0.01 0.73 % 0.05 0.76 % 0.05 0.75 % 0.02

OVX, ovariectomized rats; Sham, sham-operated rats
* Data are shown as means % SD (n ¼ 6 or 8).
y Significant difference from OVX casein group at P < 0.01.

Fig. 2. Femur mineral density by dual-energy x-ray absorptiometry (DXA). Bone mineral density (BMD) levels in femurs of sham and ovariectomized (OVX) rats fed casein,
shark, or cod diets. BMD was measured by DXA, and the femur was divided from top to bottom into 20 slices. Data for slices 3 and 18 are shown. (A) Proximal metaphysis
(slice 3). (B) Distal metaphysis (slice 18). Data were shown as means % SD (n ¼ 6 or 8). *Significant difference from OVX casein group at P < 0.05.Q2 ySignificant difference from
OVX casein group at P < 0.01.
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obviously different from casein because it contains lower levels
of the amino acids glutamic acid/glutamine, proline, tyrosine,
and valine, and higher levels of glycine, arginine, alanine, and
methionine. Furthermore, shark protein was characterized as
containing relatively high levels of isoleucine and leucine
compared with cod protein.

Properties of SH and CH

Molecular-weight distributions of SH and CH were analyzed
by gel filtration chromatography, as shown in Figure 1. The
average molecular weights of SH and CH were 221 and 314,
respectively.

Effect of shark protein on the basic parameters and BMD

The rat experimental data are shown in Table 3. Although
the final weight and food intake increased significantly, the
uterine weight decreased significantly in the OVX casein group

compared with the sham casein group. However, there was no
significant difference between OVX groups in final weight, food
intake, uterine weight, femoral bone weight, and bone length.

To examine whether the effects of shark protein and cod
protein differed between trabecular and cortical bone, the effects
of these diets on BMD were compared in different slices along
the femur. Figures 2A and 2B show the BMD values of slice
numbers 3 and 18, respectively, from the experimental rat right
femurs. The OVX shark group showed an increase in BMD at the
epiphysis that was composed mainly of trabecular bone. The
BMD of the OVX shark group was higher than that of the OVX
casein group.

Representative pictures of QCT images of the proximal met-
aphysis and the distal metaphysis of the femur are shown in
Figure 3. Decreases in cortical bone were seen in the proximal
femur (Fig. 3A) of the OVX casein group compared with those of
the sham casein group. The OVX shark group showed increases
in cortical bone in the proximal femur similar to the sham casein
group. Furthermore, decreases in trabecular bone were seen in

Fig. 3. Representative features of quantitative computed tomography images of cross sections of (A) proximal metaphysis and (B) distal metaphysis of femur. Femur
specimens were analyzed using cross-sections taken 6 mm from the proximal end and 5 mm from the distal end. The arrow in (A) indicates cortical bone area. The arrow in
(B) indicates trabecular bone area. Morphometric parameters of the proximal and distal metaphysis of femurs are described in Table 4. Bars 1 mm.
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the distal femur (Fig. 3B) of the OVX casein group compared with
those of the sham casein group. The OVX shark group showed
increases in trabecular bone in the distal femur to levels similar
to the sham casein group.

Total BMD, cortical BMD, and trabecular BMD of the right
femur were measured by QCT. Total BMD, cortical BMD, and
trabecular BMD decreased significantly in the OVX casein group
compared with the sham casein group (Table 4). The OVX shark
group showed an increase in cortical BMD at the proximal sites of
the femur. Furthermore, the OVX shark group showed an in-
crease in trabecular BMD at the distal sites.

Effects of SH on 1,25(OH)2 D3-induced osteoclast formation

Osteoclast differentiation was estimated by TRAP-positive
multinucleated cell formation. Osteoclast formation was
induced by 1,25(OH)2 D3. As shown in Figure 4A, osteoclast
formation was hardly detected when no 1,25(OH)2 D3 was
added. However, when 1,25(OH)2 D3 was added, osteoclast for-
mation was seen. With the addition of SH, osteoclast formation
was inhibited. The number of differentiated osteoclasts induced
by 1,25(OH)2 D3 was 28.7 % 4.8 cells per well. The addition of SH
reduced the number of TRAP- positive multinucleated cells to
35% (Fig. 4B).

Effect of SH on RANKL-induced osteoclast formation

Although the bone marrow cultures were carried out in
conditions that promoted osteoclastogenesis, it is still possible
that the effects seen depended on the presence of other cell
types. Therefore, we repeated these studies in RAW264 cells, a
clonal cell line with a preosteoclast phenotype. Inhibition of
osteoclast development was again observed with SH at 10 mg/
mL with the same efficacy seen in the bone marrow cultures
(Fig. 4C). This suggests that SH has a direct effect on preosteoclast
cells and does not depend on the presence of other cell types. The
number of TRAP-positive cells declined by 23% in SH-treated
cultures. The number of TRAP-positive cells also declined by
15% in CH-treated cultures.

Discussion

Results of the amino acid analyses of shark protein and cod
protein, showed no significant differences (Table 2) because they
are both derived from white fish. Because the protein is largely
muscle, it can be assumed that mainly actin and myosin were
digested. However, differences in molecular weight were found
between SH and CH when treated with Alcalase"2.4 L FG and
umamizyme G. The sharks had been caught in tuna trawl nets,
thus they had been stored on ice for a long time. In contrast, the
cod had been caught during inshore fishing, so they had been
frozen quickly after being caught. Several biochemical and
enzymatic changes are triggered in fish muscle soon after death,
so that the peptides lower in molecular weight [14]. Enzymes are
commonly used as food-grade additives dissolved in water and
these easy to handle materials will be useful as health foods in
the future.

The ovariectomies were deemed successful as visually
confirmed by the high degree of atrophy found in all corre-
sponding ovaries. The greater body mass accretion of the cas-
trated rats was in agreement with other reports [15,16] and is
understood to result from the absence of estrogen, which regu-
lates body fat deposition and leads to more efficient food con-
version, the latter characteristic being verified despite the
ovariectomized animals being pair-fed with sham rats [16].

Figure 2 shows the lower BMD of the epiphysis from the OVX
casein group compared with the sham casein group. The pa-
thology of the epiphysis from the OVX casein group showed a
lower density of trabecular bone than the sham casein group
(Fig. 3). Ovariectomy stops the secretion of estrogen and de-
creases BMD, especially in the trabecular bone and under the
epiphyseal plate. The OVX casein group showed symptoms of
osteoporosis. However, BMD levels in the OVX shark group were
higher than in OVX casein group. Bone formation and bone
resorption were most active in the trabecular bone area
(epiphysis). As the amino acid content of the shark protein is
practically identical to that of cod protein, the different responses
observed in both the OVX shark and OVX cod groups could only
be explained by the physiological functions likely to be linked to
some of the peptides.

Table 4
Quantitative computed tomography measurements of femurs in rats fed casein, shark, or cod diets*

Sham OVX

Casein (n ¼ 6) Casein (n ¼ 8) Shark (n ¼ 6) Cod (n ¼ 8)

Whole
Total BMD (mg/cm3) 779.2 % 22.8y 683.0 % 34.4 708.0 % 21.0 703.7 % 13.6
Cortical BMD (mg/cm3) 1111.8 % 5.6y 1070.2 % 24.8 1084.8 % 13.8 1083.6 % 13.5
Trabecular BMD (mg/cm3) 489.4 % 25.4y 402.5 % 20.9 423.0 % 15.9 416.2 % 13.6

Proximal
Total BMD (mg/cm3) 843.4 % 30.0y 745.9 % 33.2 776.9 % 25.4 753.1 % 21.8
Cortical BMD (mg/cm3) 1089.4 % 7.9y 1038.0 % 25.2 1964.9 % 8.2z 1050.1 % 15.9
Trabecular BMD (mg/cm3) 577.4 % 31.7y 499.5 % 25.8 511.6 % 27.0 501.1. % 24.3

Central
Total BMD (mg/cm3) 837.6 % 37.4y 773.3 % 38.2 798.9 % 20.2 805.7 % 20.7
Cortical BMD (mg/cm3) 1259.8 % 8.9z 1235.9 % 17.5 1246.0 % 14.8 1246.7 % 13.1
Trabecular BMD (mg/cm3) 240.0 % 15.5z 223.1 % 6.4 227.6 % 11.1 227.6 % 14.3

Distal
Total BMD (mg/cm3) 695.3 % 21.3y 583.4 % 37.6 602.7 % 20.9 606.8 % 12.7
Cortical BMD (mg/cm3) 995.2 % 9.8y 940.8 % 33.1 942.4 % 21.5 957.3 % 15.0
Trabecular BMD (mg/cm3) 531.0 % 24.8y 414.4 % 26.6 444.1 % 14.4z 134.3 % 13.9

BMD, bone mineral density; OVX, ovariectomized rats; Sham, sham-operated rats
* Data are shown as means % SD (n ¼ 6 or 8).
y Significant difference from OVX casein group at P < 0.01.
z Significant difference from OVX casein group at P < 0.05.
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It is generally accepted that milk is an excellent source of
calcium and contains several profitable components for calcium
resorption in the intestine, such as lactose and phosphopeptides,
formed by the proteolytic digestion of milk casein [17–19].
However earlier studies confirmed that calcium resorption was
unaffected by shark protein (data not shown). The shark protein
was digested into amino acids and peptides and absorbed in the
body. This might have had a direct effect on osteoclast and
osteoblast activity, thus increasing the BMD. Accordingly, we
prepared low-molecular-weight peptides from shark and cod
protein using Alcalase"2.4 L FG and umamizyme G for in vitro
studies.

In bone remodeling, bone resorption by osteoclasts occurs
before bone formation by osteoblasts. Estrogen deficiency ac-
celerates bone resorption, and trabecular bone becomes porif-
erous [20]. Therefore, suppression of bone resorption leads to

arrested trabecular bone loss under estrogen deficiency. In the
presence of transforming growth factor-b and macrophage
colony-stimulating factor, osteoclast progenitor cells differen-
tiate from stem cells [21–24]. In the presence of macrophage
colony-stimulating factor and RANKL, preosteoclasts differen-
tiate from progenitor cells [25,26]. RANKL is a membrane-bound
factor that is produced by osteoblasts and stromal cells in
response to a variety of signals such as 1,25(OH)2 D3 and para-
thyroid hormone. RANKL acts on osteoclast progenitors to induce
osteoclast differentiation [27,28]. Although shark protein is
thought to inhibit bone resorption in animals, its target cells in
relation to bone resorption and its mode of action have not been
fully elucidated. We determined the effects of SH on the function
and differentiation of osteoclasts. In this study we demonstrated
that SH inhibits TRAP-positive multinucleated cell formation
induced by 1,25(OH)2 D3 in cultures of bone marrow cells and

Fig. 4. Inhibition of osteoclast formation by shark protein hydrolysates (SH). (A) SH was added to bone marrow cells with 1 a,25-dihydroxyvitamin D3 (D3) in 48-well plates.
After incubation for 6 d, osteoclasts (arrows) were stained using the tartrate-resistant acid phosphatase (TRAP) method. Bars 100 mm. (B) TRAP-positive multinucleated cells
that had more than three nuclei were counted in bone marrow cells. (C) RANKL-stimulated TRAP-positive multinucleated cells in RAW 264 cells. Data were shown as means %
SD (n ¼ 3). E2, 17 b-estradiol; CH, cod protein hydrolysates. *Significant difference from D3(þ) control at P < 0.01. ySignificant difference from RANKL(þ) control at P < 0.05.
zSignificant difference from RANKL(þ) control at P < 0.01.
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RANKL in cultures of RAW264 cells. Our results suggest that the
suppressive effect of SH on bone resorption might mainly result
from its direct inhibitory effect on osteoclast differentiation
(Fig. 4). We demonstrate the effect of SH on osteoclast differ-
entiation and that its inhibitory effect on differentiation is
partially responsible for its suppressive effect on bone resorption
in cell culture. Similarly, in this study we demonstrated that CH
inhibits TRAP-positive multinucleated cell formation induced by
RANKL in cultures of RAW264 cells. However, we included an
effective material such as shark protein, but the levels may have
been very low because no effect was seen in vivo.

It has been reported that bioactive peptides derived from
marine species improve BMD levels in marine collagen peptides
[29], and leucine–lysine–proline [30]. It has also been reported
that these peptides stimulate osteoblasts, thus increasing bone
formation. However, we demonstrate here that SH acts directly
on the differentiation of osteoclasts.

Conclusion

We show that ingesting shark protein increases BMD in
osteoporosis, apparently through the inhibition of osteoclast
formation. Therefore, wewould like next to identify and isolate a
peptide in shark protein inhibiting osteoclast differentiation.
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